
Implementation
Of A Single Instance Class
by John Chaytor

This article demonstrates a
technique which can be used

to ensure that no more than one
instance of a class can be created
in an application. This is achieved
by making use of a little used
Delphi feature, class methods. An
example of where this would be
useful is the TSession class, defined
in DB.PAS. This object is created
automatically for you and is
accessed though the global vari-
able Session. The documentation
for this class states that only one
instance should be created in an
application and instructs you to
not create another, but there is
nothing to actually stop you from
doing so.

To demonstrate the technique, a
demo application (SNGLINST) has
been provided on this month’s disk
which defines a new class called
TSLSingle, that I derived from
TStringList, which ensures that
only one instance can be created,
no matter how many times Create
is called. The app simply shows
client views of data (loaded from a
file). Whenever the data is
amended, all client views are
refreshed automatically via event
procedures. Only a few methods
have been overridden to illustrate
the concepts, it is not intended to
be a full implementation. To
demonstrate the implications of
deriving new classes from this
‘single instance’ class the applica-
tion defines a second class called
TSLSingleNum which simply places a
restriction that all strings added
must start with a digit. The rest of
this article describes the
techniques used. Extra comments
are in the source code.

Class Methods
If you have never encountered
class methods before they can be a
bit confusing initially. A class
method is a function or procedure

which operates on a class rather
than an individual instance of that
class. That is, a class method will
perform processing regardless of
the number of instances which
may exist – even if no objects exist.
However, a restriction put upon
class methods is that they cannot
access any instance data (for exam-
ple the field definitions in the
private section of a class declara-
tion). This is understandable as
instance data does not exist until
an object is created.

You may have already used class
methods without knowing it. For
example ClassName, which is de-
fined in the class TObject, is avail-
able for all classes. You can call this
method without needing to create
any objects. The code below shows
two class functions being used.
ClassParent returns the parent
class of TForm and ClassName
returns the Name of that class:

ShowMessage(
 TForm.ClassParent.ClassName);

This will display TScrollingWin
Control in a MessageBox. This is
possible because these functions
are accessing data set up by the
compiler ‘behind the scenes’. The
class functions know how to access
that data for you. We will use a
similar technique when we imple-
ment the Create constructor for
our class.

Constructors
As we all know, the first thing you
must do when using an object is
create the object. This is usually
done by a call to Create using a
class reference. Each call to Create
will cause a new instance to be
created on the heap. So given the
following two lines of code:

MyObjectA := TMyClass.Create;
MyObjectB := TMyClass.Create;

two object instances will be
created; MyObjectA and MyObjectB
will contain different pointers.
However, for our class we want a
single instance to be created. Any
subsequent calls to Create need to
return the pointer to the original
instance. Hence, in the above case
MyObjectA and MyObjectB would
point to the same object instance.
The next section explains how this
is done.

A Class Method Constructor
Listing 1 shows a typical type
definition for a regular class
(TStandardClass), along with a sim-
plified type definition for our class
(TSLSingle). The good news is that
the changes aren’t drastic, but
there are some subtle points which
need to be addressed.

The first point to note is that the
Create for our class is not a con-
structor at all. It is, in fact, a class
function which just happens to be
called Create. This function returns
a type of TSLSingle. Compare this
to the normal constructor where
no return type is specified (as the
compiler knows this information).

Listing 2 shows a cut down ver-
sion of the source on the disk. It
shows all the important points we
need to address here. See the
source code for further discussion.

As you can see, our class func-
tion Create accesses two variables,
FInstance and FUsage. As we are
unable to access instance data in
class functions these fields cannot
be contained within the object. So
where are they? These fields are
defined as typed constants in the
implementation part of the unit. As
such, they are stored in the data
segment, but are private to our
unit.

The Create class function first
increases the FUsage count, then
if we have not already created the
object, it calls the protected

46 The Delphi Magazine Issue 10

constructor RealCreate to create it.
This is possible as Class methods
are allowed to call constructors
and destructors. Since the
RealCreate constructor is defined
as protected, this means that no-
body using our class can create an
instance behind our back! Hence,
we always know how many
instances have been created.

The pointer to the object, re-
turned from RealCreate, is stored in
FInstance and passed back to the
caller. If a subsequent call is made
to Create (determined by the usage
count), the function simply

type
 TStandardClass = class(TStringList)
 public
 constructor Create;
 destructor Destroy; override;
 end;

 TSLSingle = class(TStringList)
 protected
 constructor RealCreate; virtual;
 destructor RealDestroy; virtual;
 public
 class function Create: TSLSingle;
 procedure Destroy;
 procedure Free;
 end;

➤ Listing 1

unit Snglins9;
interface
type
 TSLSingle = class(TStringList)
 FOnChangedList: TList;
 protected
 procedure Changed; override;
 constructor RealCreate; virtual;
 destructor RealDestroy; virtual;
 public
 class function Create: TSLSingle;
 procedure Destroy; virtual;
 procedure Free; virtual;
 procedure RegisterOnChangedEvent(Routine:
 TDataChangedEvent); virtual;
 procedure UnRegisterOnChangedEvent(Routine:
 TDataChangedEvent); virtual;
 { This class function is for demonstration
 purposes only }
 class function Usage: Integer;
 end;

implementation
const
 FUsage: Integer = 0;
 FInstance: TSLSingle = nil;

class function TSLSingle.Create;
begin
 Inc(FUsage);
 If FUsage = 1 then begin
 FInstance := RealCreate;
 ...
 end;
 Result := FInstance
end;

constructor TSLSingle.RealCreate;
begin
 inherited Create;
 Sorted := True;
 Duplicates := dupAccept;

 FOnChangedList := TList.Create;
 LoadFromFile(ExtractFilePath(Application.ExeName)+
 ’\TESTDATA.TXT’);
end;

procedure TSLSingle.Free;
begin
 Destroy;
end;

procedure TSLSingle.Destroy;
 procedure Error;
 begin
 raise Exception.Create(Format(
 ’The Destroy method of the TSLSingle class was ’+
 ’called using a pointer value’#13#10’of %p. This ’+
 ’is invalid, it should be %p’, [Pointer(Self),
 Pointer(FInstance)]));
 end;
begin
 if Self <> nil then begin
 { Error if there is not currently an instance of
 this object or the pointer passed is invalid }
 if (not Assigned(FInstance)) or
 (Self <> FInstance) then
 Error;
 Dec(FUsage);
 if FUsage = 0 then begin
 RealDestroy;
 FInstance := nil;
 ...
 end;
 end;
end;

destructor TSLSingle.RealDestroy;
begin
 { Put all standard destructor code here }
 inherited Destroy;
end;

end.

➤ Below: Listing 2

updates the FUsage count and re-
turns the instance address stored
in FInstance. This is analogous to
the way DLLs work.

The code you put in the
RealCreate constructor is exactly
the same type of code you would
put in a standard Create method,
including calls to the inherited
constructor (usually Create).

Destroying The Object
Again, as everyone knows, you call
the Free method to destroy an ob-
ject. Ordinarily, when you call Free,
the Destroy destructor is called as

long as the pointer is not nil. This
is definitely not what we want! If we
allowed this to happen we would
generate GPFs whenever more
than one instance had been
created, as the data would be freed
from the heap on the first request.
To avoid this, the class explicitly
defines both Free and Destroy
methods. (Note: Destroy is a
method, not a destructor). This
means that the class destructor
is only called when we explicitly
call it.

The Free method simple calls the
Destroy method, where all the logic
resides. This is a safeguard against
people who call Destroy instead of
Free! The Destroy method makes
use of the FUsage variable. Each
time Destroy is called, the FUsage
count is decreased. Only when the
value reaches zero do we actually
destroy the object by calling the
RealDestroy destructor. When we
finally free the object we set the
FInstance variable to nil. The code
you put in the RealDestroy destruc-
tor is exactly the same type of code

June 1996 The Delphi Magazine 47

you would put in a normal Destroy
method, including the call to the
inherited destructor (usually
Destroy).

Events
Standard classes have event prop-
erties (such as OnChanged) which
can be set to method addresses
and are invoked when the event
occurs. In our class, there is only
one ‘real’ object instance, but there
may be multiple event handlers
which need to be called. Therefore,
the standard method of storing the
address is not sufficient. One way
to handle this is to amend the defi-
nition for the event write property
to call a property access method
which would store each address in
a list. When the event occurs, the
class simply calls each event
procedure in turn. However, a
problem with this is, if you wish to
set the event property to nil how
does the class know which of the
possible event procedures should
be removed from the list?

To simplify the situation, and to
highlight the difference in
approach for this class, I have im-
plemented RegisterOnChangedEvent
and UnRegisterOnChangedEvent
methods. The class maintains a list
of all event procedures which need
to be called when the event occurs.
It calls them in the registration
order.

Considerations
For Derived Classes
Deriving new classes from a single
instance class is not a major prob-
lem (refer to TSLSingleNum for an
example) as long as you consider
the following.

Always create a new constructor
as a class function and return the
new class type.

Call the RealCreate constructor
when this is the first instance cre-
ated. In the RealCreate constructor,
call the inherited RealCreate con-
structor.

Ensure that any usage and
instance type variables are differ-
ent from those used in the parent
class. This will ensure that you
don’t overwrite these values in any
application which creates both
your new class and its parent class.

Provide a Free method which
simply calls Destroy.

Provide a Destroy method which
calls the RealDestroy destructor

only when the last instance of the
object needs to be freed.

In the RealDestroy destructor,
call the inherited RealDestroy.

➤ Figure 1

48 The Delphi Magazine Issue 10

Both the Free and Destroy
methods should specify override in
their definitions to provide
polymorphism.

SNGLINST Sample Application
When you compile and execute the
sample application (SNGLINST.DPR,
see Figure 1) a single window will
be displayed with a caption
MainWindow. To create an instance of
either class (TSLSingle or
TSLSingleNum) select the required
View type radio button then click
Create Form. This will create a client
form with the data type (All/
Numeric) displayed in the window
caption. This provides a read only
view of the data and displays the
address of the object.

When the first instance of each
class type is created a second win-
dow Data View is displayed which
provides update access to the
same data. This form also shows
the object address to allow you to
ensure that they are referring to
the same object. After creating the
new instances the number of cop-
ies for each type is updated in the
main window. In the Data View win-
dow you can amend the data; if you
do so, all associated client forms
will be refreshed.

When you close a client form, it
destroys the instance and the
window is destroyed. The number
of copies for each type is updated
in the main window. If the last
instance is destroyed for the class,
the Data View window is also
destroyed.

Enhancements
As this class stands, there is no
protection against multiple up-
dates. This should be OK for Win16
applications but would cause prob-
lems for Win32 applications.
Protection against concurrent up-
dates needs to be implemented.
This is beyond the scope of this
article but can be implemented
using the Win32 API.

John Chaytor lives in Brighton,
England, and can be contacted via
CompuServe as 100265,3642

June 1996 The Delphi Magazine 49

	Class Methods
	Constructions
	A Class Method Constructor
	Destroying The Object
	Events
	Considerations For Derived Classes
	SNGLINST Sample Application
	Enhancements

